Exercise 9

1. Let $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a strictly convex function. Suppose f has a global minimizer, show that it is unique.
2. Consider

$$
\begin{gathered}
\min x_{1}^{2}+x_{2}^{2} \\
\text { subject to }\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2} \leq 1,\left(x_{1}-1\right)^{2}+\left(x_{2}+1\right)^{2} \leq 1
\end{gathered}
$$

(a) Ginve the feasible set and optimal solution x^{*}.
(b) Give the KKT conditions and explain whether there exists $\lambda_{1}^{*}, \lambda_{2}^{*}$ such that $x^{*},\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)$ satisfy the KKT conditions.
3. Write down the support vector machine problem. Derive the dual SVM problem and explain how to use the optimal value λ^{*} of dual problem to give the optimal value of the primal problem.

